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Abstract. We consider inelastic light scattering by electron excitations in a two-dimensional
electron system, which is induced by the Coulomb coupling between the Fermi sea and the
interband excitons. The distinguishing feature of this mechanism of inelastic light scattering
is a strong enhancement of the intensity in resonance with high two-dimensional subbands.
Such resonant behaviour of the light scattering was observed in recent experiments for a two-
dimensional electron plasma, quantum wires, and dots. In this paper we focus on the effect of
the normal electric field on the intensity of the light scattering. We show that the interference
between various virtual processes leads to the specific electric field dependence of the intensity.
The intensity of the light scattering by charge-density excitations as a function of the normal
electric field has a maximum at non-zero field. This maximum arises from the Coulomb direct
interaction between the polarized exciton and the electron gas. Light scattering by spin-density
excitations is assisted by the exchange interaction, and its intensity decreases with increasing
electric field.

1. Introduction

Inelastic light scattering in semiconductor microstructures with relatively small numbers
of electrons can be observed only under specific interband resonance conditions. In recent
experiments on two-dimensional (2D) electron plasma [1–3], quantum wires, and dots [4, 5],
light scattering by low-frequency intrasubband excitations was observed under conditions of
resonance withhigh 2D subbands. In reference [6], the same resonant behaviour was found
for light scattering by intersubband excitations. This type of resonant light scattering cannot
be described by the use of the usual second-order perturbation theory, which predicts only
resonance with the ground electron subband. To explain the resonant behaviour of the Raman
intensity, the authors of reference [6] discussed third-order optical processes, which are
assisted by the Coulomb interaction. Such processes are strongly enhanced under resonances
with high 2D subbands. Before [6] appeared, third-order Raman processes in doped quantum
wells were considered qualitatively in reference [7]. For bulk semiconductors, the third-
order processes were widely discussed in connection with Raman scattering by optical
phonons [8].

We note that in most cases Raman experiments are performed on GaAs–AlxGa1−xAs
quantum wells with an internal normal electric field. In this paper, we suggest considering
the effect of the normal electric field on the intensity. The electric field in a quantum
well can arise from asymmetric doping, or can be induced by the voltage applied to a
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metallic gate on the top of a sample. In addition, built-in electric fields can arise in strained
semiconductor layers due to the piezoelectric effect.

In the present paper, we propose a quantitative description for the third-order Raman
processes in a quasi-2D electron plasma of a quantum well in the regime of resonance of
the conduction and valence bands. We focus only on light scattering by low-frequency
intrasubband excitations, and on interband resonances between 2D subbands with equal
numbers. Using model calculations, we show that the electric field dependence of the
intensity reflects the interference between various virtual processes. In a square quantum
well, the main resonant contribution to the intensity can be connected with the Coulomb
exchange interaction. In the presence of an electric field, the exciton forms a dipole, which
strongly interacts with an electron gas, and can create charge-density excitations. Such
Coulomb direct interaction results in a maximum in the electric field dependence of the
intensity of the light scattering by charge-density excitations.

Figure 1. (a) The second-order scattering process involving two interband optical transitions;
this process is enhanced by resonance with the ground exciton. (b), (c) Third-order scattering
processes, which involve either a photo-excited electron (b) or a hole (c); the interband processes
are optical, while the intraband transitions are induced by the Coulomb interaction. The processes
(b) and (c) are strongly enhanced by resonance with high subbands.

2. Third-order light scattering processes

In this section we intend to consider the processes of light scattering by low-frequency
intrasubband excitations of a quasi-2D electron system under interband resonance conditions.
The second-order optical process corresponds to the diagram shown in figure 1(a), where the
interband transitions between the conduction and valence bands are assisted by incident and
scattered photons,ω1(2). The cross section in this case has the resonant factor 1/(ω1−Eg)2
[9], whereEg is the energy of interband resonance involving the ground 2D subbands in the
conduction and valence bands. To include resonances with high 2D subbands, we suggest
considering the diagrams shown in figures 1(b), 1(c). In these diagrams, interband transitions
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are assisted by incident and scattered photons, while intrasubband transitions are induced
by the Coulomb coupling between a photo-excited electron–hole pair (or an exciton) and
the plasma. The first and third virtual processes are optical, while the intermediate virtual
process is assisted by the Coulomb coupling. The two processes shown in figure 1(b), 1(c)
involve either a photo-excited electron or a hole. These diagrams give the main contributions
to the cross section if the photon energy is close to resonance. Also, we assume that the
characteristic energy of the intrasubband excitationsω is much less than the intersubband
spacing�. In this case we have the situation in which both incident and scattered photons
are in resonance with high subbands of a quantum-well system. Usually, the intrasubband
energiesω are of order 2–3 meV, while the intersubband spacing� ' 10–20 meV. If
ω � �, we can consider isolated interband resonance with certain high subbands in the
conduction and valence bands.

To calculate the interband optical matrix elements for a GaAs quantum well, we will use
the Bloch functions of the Kane model. Also, we will consider a simple parabolic model of
the valence band, and resonance with a heavy-hole subband. The envelope wave functions
of the conduction band can be written as9c

n(R) = eip·rχcn(z), whereR = (r, z) is the
3D coordinate, andr andz are the in-plane and normal coordinates, respectively;χcn(z) is
the size-quantization wave function, andn is the number of the 2D subband. The single-
electron wave function, written taking into account the Bloch part, is9c

n(R)u
c
σ (R). Here the

Bloch partucσ (R) = |S〉|σ 〉, where|S〉 is the spatially periodic function and|σ 〉 is the spin
function withσ = ±1/2. The ground subband in the conduction band has the indexn = 0.
The envelope wave functions of the heavy-hole subbands can be written in a similar form:
9v
m(R) = eip·rχvm(z), whereχvm(z) is the size-quantization wave function for a 2D subband

numberedm. The total wave function of a heavy hole is9v
m(R)u

v
Jz
(R), whereuvJz (R) are

the Bloch functions with the angular momentaJz = ±3/2. The Bloch functions of heavy
holes in the Kane model areuv+3/2(R) = |X+ iY 〉|↑〉/√2 anduv−3/2(R) = |X− iY 〉|↓〉/√2.

The cross section of the inelastic light scattering is given by (see [9])

d2σ

d� dω
= ω2

ω1

e4

c4m4
0

S(ω) S(ω) =
∑
F

|〈F |V̂eff |I 〉|2δ(EF − EI − ω) (1)

whereS(ω) is the structure factor, andω1(2) andk1(2) are the energies and the wave vectors
of incident (scattered) photons, respectively;ω = ω1 − ω2 is the energy transfer;̂Veff is
the effective operator of the light scattering, which describes the transition between the
many-electron initial state|I 〉 of the energyEI and the final state|F 〉 of the energyEF .
The temperature is assumed to be zero.

In a many-particle system, the matrix elements for the light scattering can be written as

V̂eff =
∑
p,σf ,σi

M(p, σf , σi)ĉ
+
p+k||,σf ĉp,σi (2)

where ĉ+p,σ and ĉp,σ are the creation and annihilation operators for the lowest electron
subband; p and σ are the 2D electron momentum and the spin, respectively. The
matrix elementM(p, σf , σi) describes a single-particle intrasubband transition|p, σi〉 →
|p+ k||, σf 〉 in a plasma, wherek|| = k1|| − k2|| is the light momentum transfer parallel to
the layer. To write out the operator (2), we have taken into account the conservation of
the in-plane momentum in a 2D system. In addition, we assume that electrons in the initial
state occupy only the ground subband in the conduction band.

The resonant structure of the cross section depends on the character of the intermediate
states. The intermediate states for the light scattering process can be taken in the form of
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an electron–hole pair, or in the form of an exciton. In the following we will discuss both
cases.

The optical processes shown in figures 1(b), 1(c) are described by a third-order
perturbation theory. As was mentioned above, the equilibrium electron gas occupies the
ground 2D subband, while the photo-excited electron–hole (or the exciton) relates to high
2D subbands. In our approach, the Coulomb interaction between the photo-excited electron–
hole pair (or the exciton) and the electron gas of the ground subband in the conduction band
will be considered in the framework of a perturbation theory. On the other hand, in the
case of the excitonic intermediate states, the Coulomb coupling between an electron and a
hole in the photo-generated exciton will not be treated as a perturbation.

We will calculate the cross section of the light scattering in two steps. In the first step of
our calculations, we will find the matrix elementsM(p, σf , σi) for a non-interacting electron
gas of the ground subband. In the second step, using the matrix elementsM(p, σf , σi),
we will express the cross section (1) in terms of the correlation functions of an interacting
electron gas. A similar procedure was used before in [9, 10], to describe the second-order
Raman processes in doped semiconductors. This method is based on the assumption that
the Coulomb coupling in the electron gas can be considered as a perturbation.

2.1. Processes involving electron–hole pairs

The matrix elements for the processes shown in figures 1(b), 1(c) can be written as

M(p, σf , σi) =
∑
ν ′,ν

〈f |A2 · p̂|ν ′〉〈ν ′|Û |ν〉〈ν|A1 · p̂|i〉
(Ef − Eν ′ + ω2)(Ei − Eν + ω1)

(3)

where|i〉 and |f 〉 are the initial and final states, respectively;|ν〉 and |ν ′〉 are intermediate
states,Ei,ν,ν ′,f are the energies of the corresponding states, andÛ is the Coulomb interaction
potential; A1(2) are the vector potentials of incident (scattered) photons, andp̂ is the
momentum.

It is convenient to calculate the matrix elements (3) by use of the second-quantization
formalism. As was mentioned above, the matrix elementM(p, σf , σi) describes a single-
electron transition in a non-interacting gas. The initial state|i〉 in equation (3) relates to the
equilibrium non-interacting Fermi gas on the ground subband. The final state in equation
(3) should include a single-electron excitation in a plasma and, thus, can be written as
|f 〉 = ĉ+p+k||,σf ĉp,σi |i〉. The interband optical matrix elements in equation (3) involve the
Bloch functions and can be written as

A1 · p̂ = Pcv√
2
〈χcn |eik1zz|χvm〉

∑
q

â+q+k1||,n,+1/2b̂q,m,+3/2(e1x + ie1y)

+ â+q+k1||,n,−1/2b̂q,m,−3/2(e1x − ie1y) (4a)

A2 · p̂ = P ∗cv√
2
〈χvm|e−ik2zz|χcn〉

∑
q

b̂+q−k2||,m,+3/2âq,n,+1/2(e2x − ie2y)

+ b̂+q−k2||,m,−3/2âq,n,−1/2(e2x + ie2y) (4b)

where â+q,n,±1/2 and b̂+q,m,±3/2 are the creation operators for electrons of the high subbands
numberedn andm in the conduction and valence bands, respectively;Pcv is the interband
matrix element in the Kane model, ande1 ande2 are the polarizations of the incident and
scattered photons, respectively. The matrix elements (4) are spin dependent, and describe the
allowed interband transitions:uv+3/2 → uc+1/2 anduv−3/2 → uc−1/2. The intermediate states
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|ν〉 and |ν ′〉 include a photo-excited electron–hole pair related to the high 2D subbands
numberedn andm. For example, the intermediate state|ν〉 can be written in the form
|ν〉 = â+q+k1||,n,±1/2b̂q,m,±3/2|i〉. The virtual transition between the intermediate states|ν〉
and |ν ′〉 is induced by the Coulomb coupling. In our calculations we take into account
the Coulomb direct and exchange interactions between the photo-excited electron and the
Fermi gas. At the same time, we assume that the photo-excited valence hole is coupled
with the Fermi gas only by Coulomb direct interaction. The exchange interaction between
a valence-band hole and electrons of the conduction band is neglected because such an
interaction involves mixing between the orthogonal short-period Bloch wave functions by
the long-range Coulomb coupling. Thus, we believe that the amplitudes of the interband
exchange interaction include a small parameter proportional to the lattice constant.

To demonstrate the distinctive features of third-order Raman scattering, we now focus on
the case of interband resonances between 2D subbands with the same indices. Such resonant
conditions were used in the experimental work described in [3]. In order to calculate the
third-order matrix element (3), we have to take into account the following facts: (i) all of
the matrix elements in equation (3) conserve the total momentum of the system; and (ii)
the intermediate states in equation (3) can be electron–hole pairs with two possible spin
combinations:(σ = +1/2, J = +3/2) and (σ = −1/2, J = −3/2) (see equation (4)).
Thus, by using equations (3), (4), we find the third-order matrix elements for resonances
with n = m:

M(p, σf , σi) = P 2
cvBnn

2

∑
p̃

(
(e1|| · e2||)[2Ucc(k||)− 2Ucv(k||)− Uexc

cc ( p̃− p)]
(Enn + p̃2/2µ− ω1)2

+ i 2σi [e1× e2]zUexc
cc ( p̃− p)

(Enn + p̃2/2µ− ω1)2

)
δσi ,σf (5)

whereσi = σf = ±1/2, 1/µ = 1/mc + 1/mv, mc (v) are the effective masses of electrons
(holes) andEnn is the interband resonance energy;(e1|| · e2||) and [e1× e2] are scalar and
vector products, respectively; the factor

Bnn = 〈χvn |e−ik2zz|χcn〉〈χcn |eik1zz|χvn 〉 (6)

describes the overlap between the electron and hole wave functions. The matrix elements
(5) are spin dependent because of the spin–orbit structure of the valence band. In addition,
one can see from equation (5) that the processes involving the heavy-hole band conserve
the spin. The matrix elements of the Coulomb interaction in equation (5) are given by

Ucc(k) =
∫∫

9c
0(z)9

c
0(z)Uk(z − z′)9c

n(z
′)9c

n(z
′) dz dz′

Ucv(k) =
∫∫

9c
0(z)9

c
0(z)Uk(z − z′)9v

n(z
′)9v

n(z
′) dz dz′

Uexc
cc ( p̃− p) =

∫∫
9c

0(z)9
c
n(z)Up̃−p(z − z′)9c

0(z
′)9c

n(z
′) dz dz′

(7)

whereUk(z − z′) = [(2πe2)/(εk)]e−k|z−z
′| is the 2D Fourier transform of the Coulomb

potential. The equations (5) and (7) were written assumingk|| � p, wherep ∼ pf and
pf is the Fermi wave vector. The matrix elementsUcc (cv) relate to the Coulomb direct
interaction between the photo-excited electron (hole) and the Fermi sea, whileUexc

cc is
connected with the exchange interaction in the conduction band. The contributions of the
direct Coulomb interactionUcc (cv) in equation (5) have opposite signs because an electron–
hole pair is neutral. We note also that the combinationUcc(k||) − Ucv(k||) remains finite
in the limit k|| → 0. The spin-dependent and spin-independent terms in equation (5) lead
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to spin- and charge-density excitation spectra, respectively. The spin-dependent term in
equation (5) is induced only by the exchange interaction [6], because the Coulomb direct
interaction does not involve spins. The amplitude of the spin-independent processes (the
first term in equation (5)) includes the combination 2(Ucc − Ucv) − Uexc

cc , and arises from
both types of the Coulomb interaction. The resonant behaviour of the amplitude can be seen
after taking the integral over̃p in equation (5), and it is mostly determined by the function
1/(Enn − ω1). We note that all of the qualitative results obtained here are also valid for
resonances with the light-hole and split-off valence bands.

To analyse quantitatively the electric field dependence of the cross section, we consider
the case of the exciton intermediate states.

2.2. Processes involving excitons

It was found experimentally [3, 6] that there are very narrow peaks in the resonant structure
of the cross section. These peaks correspond to the high subband excitons. In order
to model light scattering induced by the Coulomb coupling with excitons, we have to
find the matrix elements (3), taking into account the excitonic character of intermediate
states. The envelope wave function of an exciton can be written in the simplified form
9exc
nn (Re, Rh) = eiPexcRexc9c

n(ze)9
v
n(zh)φ(re − rh) [11], where(re, ze) and (rh, zh) are the

coordinates of an electron and a hole, respectively;Rexc = (mcre+mvrh)/M is the centre-
of-mass coordinate of an exciton,M = mc + mv, Pexc in the exciton momentum, and
the indicesnn show the subband numbers. The intermediate state|ν〉 in equation (3) is
described now by the following wave function [11]:

|ν〉 =
∑
q

φ(q)â+q+(mc/M)k1||,n,±1/2b̂q−(mv/M)k1||,n,±3/2|i〉

whereφ(q) is the Fourier transform of the functionφ(r). For the case of excitons, the
interband optical matrix elements are given by equation (4) with an additional factor which,
in the limit k1(2)||a � 1, is equal toφ(0) [11], wherea is the Bohr radius. The matrix
element of the Coulomb interaction in equation (3) describes a virtual-exciton transition
Pexc → Pexc − k|| with the creation of a single-particle excitationp → p+ k|| in the
electron plasma. Thus, after calculations we have

M(p, σf , σi) = P 2
cvBnn

2

φ2(0)

(Enn − ω1)2
{(e1|| · e2||)[2Ucc(k||)− 2Ucv(k||)− V exccc (p)]

+ i 2σi [e1× e2]zV
exc
cc (p)}δσi ,σf . (8)

Hereσi = σf = ±1/2 andEnn is the exciton energy. Equation (8) is written fork1(2)||a � 1.
The matrix element of the exchange interaction between an exciton and a free electron is

V exccc (p) =
∑
q

φ2(q)Uexc
cc (q − p). (9)

One can see that the resonant enhancement for an excitonic intermediate state is stronger
than that for an electron–hole pair because of the discrete character of the exciton spectrum.
Also, the excitonic character of wave functions results in the additional factorφ2(0) in the
amplitude, and changes the matrix element of the exchange interaction.

3. Discussion

One can see from the expressions forM(p, σf , σi) (equations (5), (8)) that the electric
field dependence of the amplitude can reflect the interference between virtual channels of
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Figure 2. The electric field dependences of the cross section in a 200Å quantum well, based
on GaAs, for the interband excitonic resonance withn = m = 3; the in-plane momentum is
k|| = 5× 104 cm−1, the 2D electron density is 5× 1011 cm−2, and the photon energy is about
1.6 eV. Curves 1 and 2 show the functionsAe(F ) andAs(F ), respectively. Curve 3 shows the
overlap factor|B33(F )|2.

Figure 3. The amplitude of the light scattering by charge-density excitations, and its components
as functions of the normal electric field: curve 1 shows the total amplitude 2(Ucc−Ucv)−Uexccc ;
curves 2 and 3 represent the functions 2(Ucc − Ucv) and−Uexccc , respectively. The parameters
are similar to those for figure 2.

scattering. In a square quantum well with infinitely high walls, the wave functions9c (v)
n do

not depend on the effective masses and, consequently,9c
n = 9v

n . In this case, for interband
resonances withn = m, the valueUcc −Ucv = 0, and hence the light scattering arises only
from the exchange interaction. Thus, in a square well, the direct-interaction contribution is
absent, and the amplitude is induced by the exchange interaction. The situation is changed
in a normal electric field, when the exciton has a non-zero dipole moment and can induce
charge-density excitations in a Fermi sea due to the direct interaction. Thus, we can expect
that the direct Coulomb interaction contribution (Ucc − Ucv) can be crucial if the quantum
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well is tilted. These qualitative conclusions are supported by the numerical results shown
in figures 2 and 3. The cross section was calculated for the excitonic resonance with
n = m = 3 in a 200Å quantum well. This resonance was observed in reference [3] in the
resonant structure of Raman scattering by 2D plasmons. The exciton wave functionφ(r)

is taken in the simplest 2D form [11]:φ(r) = a−1(8/π)1/2 exp(−2r/a), wherea is the
Bohr radius of GaAs. The exchange-interaction matrix elements are relatively insensitive to
the value ofa, which was chosen to be 140̊A. The wave functions9c (v)

n were calculated
for a quantum well with the uniform normal electric fieldF ||z and infinitely high walls
(no penetration into the barriers). In this simplest model of a quantum well, the9c (v)

n are
expressed in terms of the Airy functions.

Now we focus on the electric field dependence of the light scattering intensity, which is
determined by theF -dependent coefficients in equation (8). The cross section of the light
scattering includes the second power of these coefficients, and will be written down later.
One can see from equation (8) that the intensity of the light scattering by charge-density
excitations (a spin-independent process) is proportional to the factor

Ae(F ) = |Bnn|2[2(Ucc − Ucv)− V exccc (p)]
2. (10)

The cross section of the spin-dependent light scattering is connected only with the exchange
interaction, and includes the factor

As(F ) = |Bnn|2[V exccc (p)]
2. (11)

In these factors we can choosep = pf . For typical conditions in experiments, the factors
Ae and As as a function ofF are shown in figure 2. Here we choose back-scattering
geometry withk|| = 5× 104 cm−1. The change of the wave vectork|| does not lead to a
major effect on the intensity. Figure 2 shows that the intensity of the light scattering by
charge-density excitations (the functionAe) is maximal for non-zero electric field, where
the Coulomb direct interaction becomes important. The intensity of the light scattering by
spin-density excitations (the functionAs) is a decreasing function of the electric field. The
decrease of all of the intensities at high electric fields is connected with the overlap factor
|Bnn|2, which rapidly drops with increasing electric field. Figure 3 shows how the direct
and exchange interactions contribute to the amplitudeAe at various electric fields. One
can see that in low electric fields the exchange-interaction contribution dominates, while
for F > 1.6× 104 V cm−1 the direct interaction plays the main role. In addition, we have
calculated the factorsAe andAs for the case ofn = m = 2 interband resonance. We have
found that these factors for the case wheren = m = 2 are bigger than those forn = m = 3
by a few times, but theF -dependence remains qualitatively similar.

We now turn to the cross section of the light scattering (see equation (1)). Using the
matrix elements (8), we can write the effective operator of the light scattering (2) as a linear
combination of the operators of charge and spin densities,ρ̂e(k||) =

∑
p,σ ĉ

+
p+k||,σ ĉp,σ and

ρ̂s(k||) =
∑

p,σ σ ĉ
+
p+k||,σ ĉp,σ . In the next step, we can express the cross section in terms

of the charge- and spin-density correlation functions, which describe the charge- and spin-
density excitation spectra of the light scattering [9]. Thus, using equations (1), (2), (8), we
obtain

S(ω) = P 4
cvφ

4(0)

4(Enn − ω1)4
[(e1|| · e2||)2AeFe(ω, k||)+ [e1× e2]2

zAsFs(ω, k||)] (12)

where Fe(ω, k||) and Fs(ω, k||) are the charge- and spin-density correlation functions,
respectively. Analytic expressions for the correlation functions of a 2D system can be
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found in references [12, 13]:

Fe = kωp(k||)
4

δ(ω − ωp) Fs = mc

π2

ω√
(k||vf )2− ω2

ω < k||vf (13)

whereωp(k||) ∝
√
k|| is the 2D plasmon frequency, andvf is the Fermi velocity.

The intensities related to charge- and spin-density excitations are proportional to the
factors (e1|| · e2||)2 and [e1 × e2]2

z , respectively. These combinations of the polarization
vectors determine the selection rules of the light scattering [9]. In conventional back-
scattering geometry, the charge- and spin-density excitation spectra can be easily separated
by the use of appropriate combinations of the polarizations of incident and scattered
photons [1, 6].

Usually, the in-plane wave vectork|| is much less than 1/L, whereL is the quantum-
well width. Thus, the factorsAe (s) can be taken for zero light momentum, and thek||-
dependence of the intensity arises mostly from the correlation functionsFe (s). In the case
of light scattering by plasmons, the intensity becomes proportional tok

3/2
|| . A strong k||-

dependence of the cross section related to 2D plasmons was noted in the experimental work
described in references [1, 3]. Another distinctive feature of this scattering mechanism is the
magnetic field dependence of the intensity. The perpendicular magnetic field can suppress
light scattering, as was observed in the experiment described in [14]. In a high magnetic
field, the matrix element of the operatorρ̂e(k||) for the inter-Landau-level electron transition
1l = 1 is proportional tok||lc, wherel is the Landau-level number,lc is the magnetic length,
andk||lc � 1. Thus, the cross section is proportional to(k||lc)2 ∝ 1/B [15], and decreases
with increasing magnetic field.

One of the first experimental observations of Raman scattering by in-plane electron
excitations [17] relates to GaAs–AlAs heterostructures, in which the spectrum of the valence
band is continuous. The resonant Raman measurements in reference [17] were performed
slightly above the fundamental gap. This resonant behaviour shows that the light scattering
observed in the work described in [17] could be connected with the third-order optical
processes.

The third-order Coulomb-interaction-induced mechanism can also play a role in Raman
studies of electronic quantum dots and wires [4, 5]. This mechanism allows the observation
of resonant Raman scattering in the regime of the laser energies above the fundamental
gap. In this regime, Raman spectra are located far away from intensive photoluminescence
lines. In many particular cases, the lateral size of a microstructure is much greater than
the quantum-well width, and so the lateral confinement essentially does not change the
structure of the interband resonances in the system. In this case we can use the results
of the present paper, which were obtained for a 2D system. For example, we can apply
our results to the case of relatively wide electron wires, where the single-electron spectrum
and interband resonances are mostly similar to those in a quantum well. At the same time,
the plasmon spectrum in such wires can be strongly modified, and can consist of confined
modes [16]. To describe the light scattering in this case, we can use equation (12) with a
modified correlation function, which includes a set ofδ-functions due to the confined-mode
structure of the plasmon spectrum.

In conclusion, we have discussed thek-dependent mechanism of light scattering,
which can be responsible for the resonant structure of light scattering observed in recent
experiments. The mechanism is assisted by Coulomb interaction in intermediate states, and
is enhanced by resonances with high 2D subbands. The intensity of the light scattering
depends in a specific way on the internal electric field in a quantum well, because of the
interference between virtual processes. In the case of light scattering by charge-density
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excitations, the intensity is maximal in the non-zero electric field when the Raman process
is induced by the interaction between the dipole moment of an exciton and the electron gas.
The amplitude of light scattering by spin-density excitations is proportional to the matrix
element of the Coulomb exchange interaction, and is maximal at zero electric field.
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